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Pinning of an Interface by a Weak Potential 
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We prove that in a two-dimensional Gaussian SOS model with a small attrac- 
tive potential the height of the interface remains bounded no matter how small 
the potential is; this is in sharp contrast with the free situation in which the 
interface height diverges logarithmically in the thermodynamic limit. 
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1. I N T R O D U C T I O N .  DEFINIT ION OF THE INTERFACE M O D E L  

A two-dimensional interface in a three-dimensional translation-invariant 
continuum has fluctuations which diverge as the logarithm of the size of 
the system in the thermodynamic limit. The same is true on lattice systems 
at temperatures higher than the roughening temperature and, of course, 
lower than the critical temperature. This effect can be understood in terms 
of capillary waves of unbounded wavelengths, or in terms of the infrared 
divergence of a two-dimensional massless field. It is remarkable, however, 
that an arbitrarily small perturbation favoring a particular localization of 
the interface is enough to make the fluctuations bounded around the 
preferred localization. The present paper gives a rigorous proof of this fact 
for a simple model where the interface is described by heights hie ~ for 
i e ;g 2, coupled through the Hamiltonian 

m~-  E (hi-hj)2-Jf f  E V(hi) (1.1) 
li j[ = 1 i 
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where the pinning potential V(h) is like the one described in Fig. 1 or 
Fig. 2. The boundedness of the fluctuations for this model was obtained 
previously in mean field approximation. (2) The analogous problem for a 
one-dimensional interface in a two-dimensional space is equivalent to the 
existence of a bound state for a small attractive potential in one-dimen- 
sional quantum mechanics (ref. 1 and references therein). Since the infrared 
divergences are weaker in two dimensions than in one, our result is not 
surprising. However, it seems to us that neither the one-dimensional result 
nor the technique of its proof can be used in two dimensions. In two 
dimensions there are rigorous results on mass generation based on random 
walk correlation inequalities, ~6) but they are restricted to models where the 
potential V(h) in (1.1) is monotone, increasing at least logarithmically at 
infinity. 

The idea of our proof is new and is based on a kind of Peierls argu- 
ment, suitably scaled: the analog of a " + "  spin is a height ]hi[ ~< a, which 
feels the pinning potential; the other heights [hi[ > a being regarded as " - "  
spins. We look at a state with " + "  boundary conditions. The lattice Z 2 is 
divided into square blocks of side l~> (a~)-1/2~> 1. For each configuration 
of the hi a block is called a " + "  block if at least one of the 12 spins it 
contains is a " + "  spin. It is called a " - "  block if it contains only " - "  
spins. A contour is then a connected loop of " + "  blocks encircling a region 
of " - -"  blocks. Therefore, inside the loop, the interface is not allowed to 
visit the potential and e v(insiae) = 1 for such a contour. This weight "1" can 
be comPared to the weight of the other configurations for which the con- 
nected loop of " + "  blocks is present, but where the inside of the loop is 
not specified. The probability that [hi[ ~< a at any given site i inside is then 
at least what it would be in the absence of the potential inside, but still 
with the same conditioning along the loop. This probability can be 
estimated to be of order 2a/(ln L) 1/2 if L is the size (perimeter) of the loop. 
It follows that 

2a ec .  L 2) (1.2) (e-V(insia~) ~ exp ( (ln L )  1/2 

- 8  

I 

v(h) 

E 

h 

I 

Fig. 1 



Pinning of an Interface by a Weak  Potential  73 

(a) V(h) 

a I 
h 

(b) 

a 

a 
V(h) 

8 h 
D" J 

E V (a) 

Fig. 2 

where e is the strength of the potential and c - L  2 counts the number of sites 
inside the loop (for a typical loop like a square or a disk). Therefore the 
weight of a contour of " + "  blocks encircling a region of " - -"  blocks should 
be bounded by 

( 2a ) 
exp (In L) 1/2 ~C" L 2 (1.3) 

which becomes nicely small as the length L of the contour tends to + ~ .  
The probability of an isolated " - -"  block should similarly be bounded by 

which is small if 

2a ~/2) (1.4) 
e x p (  (In l) 1/2 

//(In l)1/4 >~ ( a e )  - 1/2 ( 1.5 ) 

The final result of all this scaled Peierls expansion should then be 

(]h~t) "-~ (In/)1/2 ~ [In(as) 111/2 (1.6) 

As usual, various technical difficulties come into the game. A notable one 
is "entropic repulsion": high interface regions (insides of contours) see a 
potential barrier between h = - a  and h = a ;  entropic repulsion (3) then 
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pushes the interface away as far as In l instead of the normal fluctuations 
(ln l) ~/2. This is the main reason why we finally obtain only 

(bhe[) ~< 3a + Kiln agL (1.7) 

with d=inf (a ,  1) and g=inf(e,  1/2) (the factor 3 is not optimal and one 
could replace it by any number bigger than one). 

Our analysis does not apply yet to the decay of the correlation func- 
tions, hence to the computation of the "longitudinal correlation length" 
(the height of the interface being usually called the "transverse correlation 
length"). This is clearly an interesting open problem. We do not know 
whether it can be solved with correlation inequalities such as the ones used 
in this paper. If correlation inequalities fail, one might also try to attack 
this problem with a phase space expansion. 

Let us now turn to precise definitions and results. Background 
information on solid-on-solid and other interface models can be found in 
ref. 1. 

Let A be a finite volume in 7/2, which is a large square for simplicity: 
A = 7 7 2 ~ [ - L , L ]  2, and let d# A be the free Gaussian measure with 
Dirichlet boundary conditions, i.e., 

( i  j )  i ~ A  i ~ A  c 

where the sum is over nearest-neighbor sites and A c is the complement of 
A in 7/2. In the rest of this paper expectation values such as ( . . - )dr  of an 
observable always refer to its mean value with respect to the measure dr; 
subscripts are used to remind the reader of the particular measure 
considered. It will be convenient to use the notation ( ' " ) o  instead of 
(" -)d~g. 

By an easy Gaussian computation the mean value (h  2 )o at any fixed 
site i diverges logarithmically as A ~ vo, i.e., as the thermodynamic limit is 
performed. 

We add now a small interacting potential which tends to confine hi in 
a neighborhood of 0. For  convenience we choose 

V(h )=0  if I h l > a  (1.9a) 

V(h)= - e  if Ih[ ~ a  (1.9b) 

with a and e both positive. We define the measure 

d~A=dktg I~ e-V(h~) (1.10) 
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and we will use the notation { . . . ) v  for the expectation value with respect 
to the measure d# A. 

We shall also write for convenience A d#v=d[~  e v. 
The rest of this paper is devoted to a proof that the expectation value 

of Ihil remains bounded as A goes to infinity and that the upper bound is 
a fixed function of a and of the integral as of the potential. More precisely, 
we shall prove: 

Theorem 1. There exists a constant K such that for any fixed i �9 A 

sup ~lhil)v<<.3a+Klln~gt (1,11) 
A ~  

where ~=inf(a ,  1) and g=inf(e,  1/2). The use of g instead of e is purely 
technical and simply prevents Iln tigl from vanishing. 

We are in fact insterested mostly in the regime where a~ ,~ 1, where the 
bound (1.11) diverges logarithmically in the product ae, which is the area 
of the potential. We must stress here that the bound (1.11) is not optimal; 
we could derive more precise bounds using the remark following 
Lemma 2.3, but they would be not as simple as (1.11). 

The method we used can be easily generalized to the case of any 
negative even potential V increasing on R +. Let a > 0  and define the 
potential Va by 

Va(h)= V ( h ) -  V(a) if Ih[ ~<a (1.12a) 

Va(h)=0 if I h l > a  (1.12b) 

(Fig. 2b); then we have the following result. 

T h e o r e m  2. There exists a constant K such that for any fixed i � 9  A 

sup {Ihil)v<<.3a+ - Va(h) dh (1.13) 

We can of course choose a such that it minimizes the right-hand side of 
(1.13). From 

d ;a ! 
Va(h) dh = -2a  da V(a) 

d a  --a 

the optimal choice of a is obtained for 

d 
V(a) 3 1 f~ Va( h)dh (1.14) 

da K 2a -a 
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The proof of Theorem2 is a simple extension of the proof of 
Theorem 1, and is given in Appendix D. Therefore we imagine from now 
on that we are in the case of the potential of Fig. 1 and turn to the proof 
of Theorem 1. 

2. PROOF OF T H E O R E M  1 

2.1. High and Low Interface Decomposi t ion 

To study the model, we put it first in a big finite box A, then we prove 
estimates which are uniform in A and let A--* oe (thermodynamic limit). 
Although this is not essential, we assume that the total volume A that we 
consider is the union of a large number of blocks of side/. The corre- 
sponding finite set of blocks is noted DJ. 

Let us repeat that for any given block A eDJ there are two 
possibilities: either all the interface in A has absolute value above a and A 
is a high interface block, or at some site j 6A  we have ]hjl ~ a  and A is a 
low interface block. We define F as the set of blocks of Dg with high inter- 
face, i.e., for which the first possibility holds, and we call it the high inter- 
face region (its complement being obviously called the low interface 
region). We fix i eA  and write 

Z r  < Ihil Zr> v 
<lh,l>v = 

E r  <zr> v 

= + (2.1) 

where )~r is the characteristic function of the event that the high interface 
region is exactly F, i.e., 

Zr((h~),~A) = [I z(VizA, Ih~[ > a )  H z(3ieA, Ihzl ~<a) (2.2) 
A ~ F  A C F  

and A0 is the particular block of Dg to which the site i belongs. We have 
decomposed the sum according to whether in the numerator Ao belongs to 
F or not, and we bound the corresponding terms by different arguments. 

2.2. Upper Bound When i is In the Low Interface Region (i.e.,  
Ao~ r) 

Let us define ~ as the characteristic function of the event that A has 
low interface, i.e., 

~gz((hi)i~A) = z(3i~ A, Ih,I ~< a) (2.3) 
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We have 

hence 

Y, Zr=Oz0 (2.4) 
F ~ ,  4 o 

EF~o<lh,Izr>~ <lh~10~o>~ 
- - < l h , I  ~ , o >  ~ ( 2 . 5 )  

For e subset of A let ~b~ be the characteristic function of the event that 
is exactly the set of sites j in A for which Ihjl <~a, i.e., 

We have 

hence 

G ( ( h i ) ' ~ A )  = H z(Ih/I <~a) I1 z(Ihel >a)  
i E ~  i~c~ 

(2.6) 

< lhz l~0>v  = ~ < [h , lG>v  (2.8) 

By definition we denote the expectation value with respect to ~b~ d#v or 
~b= d~o as ( ) ~ , v  or ( ) ~ , o .  Hence 

(Ih,I G ) v  
(2.9) <lh,I >=,v- <G>v 

Using the GKS inequality (Appendix A), we obtain 

< Ih,[ >~, v ~< < Ih,I >=,o (2.10) 

Indeed, G @ v is an even ferromagnetic measure, and exp(V) is a positive 
element of ~ (Appendix A); hence, as a result 

(Ihil>~oo=([hil>~d~o=(lhil>~xp(v)o=d,~>~([h~l>c,=a~,v (2.11) 

By the GKS inequality we have again 

< Ih,I >~,o ~< <h,>h.-..vSE =;~> ~,vsr ~ (2.12) 

where the subscript O, whfch indicates that expectations are computed with 
respect to d#o, not d# v, is omitted from now on for simplicity. We have to 

~ o  = ~ ~b~ (2.7) 
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be careful at this point, because the event (hi = a, Vj e ~; hj >~ a, Vj r ~) is of 
measure 0. What is strictly defined is 

( h i ) h / e  [a -- S.a],~Cj e ~;hj~> . ,Vjr  

As a function of ~ this expression has a finite limit when 6 goes to 0. 
Inequality (2.12) holds true because if we define-the function 

p({h})- fI z(hj> O)z(Ihjl I] z(hj> O)z(Ihjl 
j e ~  jq~c~ 

l + a j  "h i  l+o-j  
= l ]  T z t  J ~>a -~ )  1] T x ( I h j l  > a )  

jeo~ jr 

(2.13) 

(where ~j is the sign of hj as defined in Appendix A), then p is in the 
positive cone cg defined in Appendix A. When multiplied by ~b~ this function 
becomes the characteristic function of the event (hie [ a - 6 ,  a], ~/jec~; 
hj>~ a, Vjr c 0. Using the GKS inequality (see Appendix A) 

([hi l )o~ >~ (]h~l)~,o (2.14) 

When 6 goes to 0, we obtain the announced inequality (2.12). 
Let Jo be one particular site of ~; once again from the GKS inequality 

we have 

The left-hand side of (2.12) is equal to 

a +  (hi)h~o = o@~> o, vjej o 

It remains therefore to find an upper bound to (h/)hj ~ 0,hl~>0, Vjej0' We are 
now faced with a SOS model above a wall. When the condition (hi ~> 0) is 
relaxed, (Ihil)hi0= 0 is bounded by C[lnd(i, jo)] 1/2, with d = d + 2 ,  the 
Euclidean distance plus 2 (the factor 2 is added to ensure that in d is 
always strictly positive, and C is some constant). 

The condition hj >~ 0, Vj, can be considered as a "wall" which generates 
an entropy repulsion phenomenon, ~  changes the behavior of this one- 
point function. Namely we have the following result. 

I . e mma  2.1. There exists two constants C1, C'1 such that 

( hi)hjo=O, hl>~O,V~ejo ,-" C1 In d(i, Jo) 

( hi)hjo=O, hj>~O, Vje jo <~ C 1 In d(i, Jo) 

(2.15a) 

(2.15b) 
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The first inequality (2.15a) is proved in ref. 3. The proof of the second 
inequality (2.15b) (the only one we use in this paper) is contained in 
Appendix B. 

Assuming Lemma 2.1, we obtain 

< Ih,[ >~, v~  a + C1 In d(i, Jo) (2.16) 

Using d(i, jo)<~2+lx/-2 and Z~ < q ~ ) v ~  <1,  we can return to (2.5), (2.8), 
and (2.9) and conclude that 

Z,-~ ~o <jhil XF>v 
~< a + C1 ln(2 + l ~ )  (2.17) 

Z r  <zr> 

In the next sections we have to choose l proportional to (&)-~/2 (see 
Lemma 2.3 below). With this choice the left-hand side of (2.17) is bounded 
by the right-hand side of (1.11), as desired. 

2.3. U p p e r  Bound W h e n  i is in the  High In te r face  Region ( i .e. ,  
Aoe I-) 

We consider that two blocks A and A' of Do are connected if they 
share a common edge (a common corner is not enough). When Ao has high 
interface the high interface region F can be decomposed into connected 
components F0, F1,..., F,,, where by definition F 0 is the connected com- 
ponent of F containing Ao. The set of connected components of F is called 
c(r). 

We define also the boundary 8F of a set F of blocks as made of that 
set of blocks not in F, but sharing an edge with some block of F (Fig. 3). 

, i , l , , ~ , ~ , l l l  

_ _  p l , l l J l L p l , l _ _ .  

- -  �9 �9 :: 

i i--::: 
_ .  _ _ _  

! i ! i i ! i i i ! i l i A  

Fig. 3 

8 2 2 , / 6 6 . / 1 - 2 - 6  
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We have 

< )/(<,.>.) 

zr>. ~ .) =( .o .o )/(.<..> 
F 0 connected 

Fo a Ao F, C( F)  a Fo 
F0 connected 

(2.18) 

where again ( . .  '>r, v i s a  natural notation for the expectations with respect 
to the measure Zr d# v- We are following once more the method of the last 
section to bound (]hi] >r,v in a way which depends only on the distance 
from i to OFo. 

Let A(F) be the following set: 

A(F)={c~A, VA~F,c~c~A=~,VAeF, c~c~A#~} (2.9) 

so that ZF=~sA(F)Oct" We write 

<lhil >r,v =Z=~Aerl <lhel @=>v (2.20) 

As a result, 

<lh,l>r.v~< sup <lhil>~,v (2.21) 
~ z A ( F )  

From the GKS inequality, 

<lhil >~,v~ < <lhi/>~,o (2.22) 

Let us choose a block A in ~?Fo and Jo an element of ~ c~ A. We can then 
use again inequality (2.12) to deduce 

< Ihil >~,o ~< <h~>hj0=~ (2.23) 

Let q(i, ~Fo) be the smallest number of elementary blocks connecting 
i to #Fo. This is a natural lattice definition of the distance from i to the 
boundary of Fo. From (2.16) we obtain 

(Ihil>~,v<~a+CllnL(i,~Fo), V~zA(F) (2.24) 

with 

L(i, gFo) = lq(i, aVo) + 2 / x ~ +  2 (2.25) 
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Therefore 

F0 connected 
AoE Fo 

<<, ~ p(Fo)[a + CI In L(i, 0Vo) ] (2.26) 
F0 connected 

AO~ FO 

where p(Fo) is the probability that in the theory with potential V the high 
interface region F has Fo as one of its connected components. In mathe- 
matical notation 

Z ,c(n ro <zr>v 
p(Fo) = (2.27) 

S r  ( Z r )  v 

The rest of our proof consists in showing that p(Fo) decreases 
sufficiently fast with the size of F 0 so as to allow the summation over F0 
in (2.26) and to offset the large factor [ a +  C1 in L(i, aF0)]. 

This is done in two steps. 

Lemma 2.2. These exists a constant C2 such that 

C 2 agl a 
l n p ( F o ) ~  - ~ a+lnL(A, aFo) (2.28) 

A E F  0 

where L(A, ~Fo) is defined by (2.25) applied at the center of the block A. 

Lemma 2.3. There exists a constant C 6>0 such that for 
&12/(ln l) > C6 

E 
F 0 connected 

z10e.% 

C2agl2 
[ a +  C~ In L(i, C~Fo)] exp - a~ro a + lnL---~, ~?Fo)] ~<2(a+ 1) 

(2.29) 

Combining Lemmas 2.2 and 2.3 with (2.18)-(2.26) and with the low inter- 
face bound (2.17) completes the proof of (2.11), hence of the theorem. 2 

Now we turn to the proof of these two technical lemmas. 

2 We have in fact a better upper bound than (2.29). Indeed from the proof of Lemma (2.3) it 
can be shown that there exists a constant  M such that for &12/(ln l) large enough, the upper 
bound in (2.29) can be chosen equal to 2(a + 1 ) e x p [ - M & 1 2 / ( l n l ) ] .  
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2.4. Proof of  Lemma 2.2 

First of all, if Fo is in C(F), then r is in the low interface region; as 
a result 

2 
F,C(F)+FO F,C(V)~FO 

f 

(~e~o e ~ ~O)o (2.30) 

with ~per0 = l~+er0  ~ ,  ~ being defined in (2.3). 
We also have 

f F 

= (~beroe-V~)o (2.31) 

As a result we obtain the bound 

(r V~-ro )o 
p(Fo)<~ (~baroe_Va)o =((e-Wro)+ero, V ~ ;o )-1 (2.32) 

Using Jensen's inequality, it follows that 

p(Fo) ~<exp((Vr0)~ac0, vA ~o ) (2.33) 

By definition of V we have 

(V/~o>+~o, VAro = -~  ~ (z(Ihel <<.a))+ero,  v . _ ~  o (2.34) 
ie Fo 

It remains to find a lower bound on 

<z(Ih+l ~< a)),~ro, vA_r o 

This is accomplished by the following lemma: 

L e m m a  2.4. We have, if C~ is the constant appearing in (2.15b), 

a 

<z(lh+l ~ a) >'~ero, VA-ro ~ 4a + 4C1 In L(i, ~Fo) (2.35) 

From this bound and (2,33)-(2.34) we immediately get Lemma 2.2. 
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The proof of Lemma 2.4 is divided into three steps: 

1. The following inequality holds true: 

([h~[)O~ro, va ro <" a + C 1 In L(i, OFo) 

2. The function 

X~--+ ( ~ ( h i - - x ) ) r  V A ro 

is an even function, which is decreasing on N +. 

3. Conclusion: proof of Lemma 2.4. 

Proof  of 1. 

83 

(2.36) 

Proof  o f  2. This is the most delicate part. Let us denote by F the 
function which assigns to each x e R the real number 

We have 

F ( x ) =  ( 6 ( h i -  x))o~ro, V A r0 

F(x)  = 
( 6 ( h , - x ) O ~ r o e X p ( -  VA to))  

(O01~oexp(--VA Co)) 

Therefore it is necessary and sufficient to show that the function 

x~-~ G(x) = ( 6 ( h i -  x ) ~ r  o e x p ( -  V A - r0 ) )  

is even (which is obvious) and decreasing on ~+. 
From translation invariance 

< 6 ( h i -  x ) O ero exp( - V A _ Co) ) 

= ( 3 ( h i )  I ]  z (3J~A,  h j ~ [ - a - x , a - x ] )  
\ A e O F  0 

(2.38) 

(2.39) 

Using (2.16), this is less than a +  C 1 In L(i, c3Fo). 

sup (Ihil)~,vA ro (2.37) 
~z E A(c~Fo) 
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As a result 

d G(x) t6(.~i ) d (  1-JroZ(3jeA, hj~[_a_x,a_x]) dx ~ 

xexp{  A~ - e.z(hj~[--a--x,a_x])})) 
j e  FO 

= E (6(h,) H z(3je~',hj~[-a-x,a-x]) 
A c OFo A '  E ~ F o  

z i '  ~ d 

d 
x ~x {x(3je A, hie E-a-x, a - x ] ) }  

xexp{j ~A_roe')((hJ~[--a--x,a--x])}) 

+ 2 (3(hi) I-I z(3J 6A,hje[-a-x,a-x]) 
j e A - -  FO zl ~ g F 0 

d 
x~xx(e'z(hj~ I -a-x ,  a - x ] ) )  

 exp{ 
j e  F 0 

(2.40) 

We shall show that each individual term in this sum is negative. First of all 
we have 

d 
~x)~(3j~A, hje[-a-x,a x]) 

=j~Ad (z(hJ~[-a-x,a-x])) 1-I g(h;r 
- j , 7 ~  j 

(2.41) 

This can easily be proved by induction on the number of points of A. 
Moreover, using the identity 

d 
~xxZ(h6 [-a-x ,  a - x ] ) =  [6(h + a + x)-6(h- a + x) ] (2.42) 

we finally obtain, using once more translation invariance, 
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d 
dx G(x)= I 6(hi- x)[ 6(hj- a) - 6(hj + a) ] 

A e aFo, je  3 

x 1-[ z(hj,(~[-a,a]) [] O~,e -v~ to) 
j ' e A  A' eOF 0 
J ' r  A ' ~ A  

+e 2 (6(h~-x)[b(hj-a)-a(hj+a)] 
j E A - - F  0 

fI 
3 eaFo 

We have 

I6(h,-x)[6(hj-a)-b(hj+a)] ~I )~(h;(~ I-a,  a]) 11 
j '  ~A A' ~,FO 
j '  ~ j  A'v~A 

l l[&(hi_x)_6(h~+x)][(5(h_a ) b(h:+a)]  
2 

~A e VA rOl 

(2.43) 

ffl d, e - vA-rol 

x [ I  z(hj,~ [ - a ,  a]) [ I  0~,e vA-r0) (2.44) 
y E A  A'Ec~Fo 
J ' # J  A'~-A 

Applying (2.44), the positivity of each element of the sum (2.43) is 
then a straightforward consequence, of the following fact: let F(hl,..., hN) be 
a positive function on NN which is an even function of each variable. Let 
hi = ailhil; then 

G i k F ( h l , . . . , h N  ) 9 0  (2 .45)  
I duo 

The proof of this result is obtained by expanding the off-diagonal part 
of d/xo and by integrating over the "spins" {ai}, using the obvious 
inequalities 

Proof of  3. Since 

f(x) = (6(hi-  x) ) *~o, vA-~o 

the function F is positive, even, and we have ~+ ~ F(x) dx = 1/2. Let z >/0 
be such that ~ F(x)dx = 1, and let 

f 
O oO X= 2 xF(x) dx = ([hil)o~o, v~ ~0 
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From 

fz+:~ f+oo z F(x) dx <~ xF(x) dx <~ X/2 (2.46) 
z 

we deduce 
1 1 
- > ~ - -  (2.47) 
z 2X 

Because F is monotone decreasing on ~+ its mean value on an 
interval [0, x]  is also decreasing, hence the following inequality holds: 

! ff  F(x)dx >~ lz If F(x)dx (2.48) 

if z ~> a. Therefore, 

a a 

F(x) dx >>. ~z>~- ~ (2.49) 

Using (2.36), we end up with 

f f  a (2.50) F(x) dx >~ 8a + 8C1 In L(i, ~Fo) 

This is the announced lower bound (2.35); hence, it completes the proof of 
Lemma 2.4 if z ~> a. 

If z ~< a, then 

fo' f ]  1 a (2.51) F(x) dx >1 F(x) dx = ~ ~> 8a + 8C1 In L(i, aFo) 

From Lemma 2.4 and (2.33) (2.34), Lemma 2.2 follows. 

2.5. P r o o f  o f  L e m m a  2.3. Let us start with some informal discus- 
sion on this lemma before turning to the technical proof. 

Lemma 2.3 is nontrivial because usually in high-temperature cluster 
expansions or situations of this type one has exponential decay in the 
volume (here the area) of the clusters or polymers on which summation 
has to be performed (the dilute case). Here we do not have exponential 
decay because it is spoiled by the logarithm of the distance to the 
boundary; for,a typical round, convex cluster of radius r we have therefore 
only decay exponential in r2/ln r. 

Near the boundary of the cluster the troublesome logarithmic factor is, 
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however, bounded, so that we have clearly exponential decay in the length 
of the boundary of the cluster. Our first observation is that for convex 
clusters or in fact for simply connected ones in two dimensions, knowing 
its boundary is enough to determine the cluster. Hence decay in the size of 
the boundary is in fact sufficient for summing over simply connected 
objects. In two dimensions we can imagine any connected cluster as a 
simply connected cluster with a finite set of holes punched in it. Hence the 
problem becomes a summation over the positions and shapes of the holes. 
The shape of the holes is controlled by the decay in the size of their 
boundaries (there are no holes in the holes in this problem). Still there 
remains a subtlety: one has also to sum over the positions of the holes. 
Clearly this is a problem only when the number of holes gets large. The 
solution must exploit the fact that when in a simply connected region there 
are many holes randomly distributed, then each point in the region is not 
far from a hole. Therefore in this case the logarithmic distance which 
spoiled the exponential decay in the area of the region is typically not big 
so that in average it does not really spoil anything. This point of view is 
nice, but to exploit it rigorously we have to order the holes in some 
systematic way, grouping together the ones which are closest to one 
another, then grouping together the clusters of holes so obtained and 
iterating the process. To organize the summation in this way is possible 
and described in Appendix C; here we give another way to proceed, which 
is to decompose the space according to a series of lattices of increasing size. 
A convenient decomposition is the same decomposition with a geometric 
progression of sizes that us natural for renormalization group or phase 
space analysis (see, e.g., ref. 4 for a review), although the argument will in 
fact be much simpler here. 

'We consider fixed lattices D 1 ..... D~ .... which generalize D o. The lattice 
D k is made of squares of side size I. 2 k and each square A of Dk contains 
exactly four squares of D~_ ~. We choose such a dyadic decomposition for 
simplicity, but of course other rules would be possible. In fact, we work 
with the restricted lattices D A made of the squares in Dk which are entirely 
within A, so that for fixed A we have only a finite set of finite lattices to 
consider, but our estimates are uniform in A and the superscript A will be 
omitted most of the time for simplicity. 

The region F o that we are interested in is called F from now on for 
simplicity and it is decomposed according to the sequence of lattices Dk in 
the following way. 

Any square in D k which is entirely contained inside F is said to belong 
to Ik(F), the interior of F at scale k. In particular, F itself can be identified 
with Io(F). Since F is fixed and finite, there is an index L such that for 
k> L, I~(F) is empty. A square A in I~(F) such that the square A' in Dk+~ 
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containing A does not belong to Ik+ I(F) is called a maximal square of/7.. 
The corresponding set of such maximal squares at scale k is called Mk(F), 
and the set of all maximal squares in F is M(F) L = U ~ = o Mk(F). Remark 
that F is exactly equal to the disjoint union of its maximal squares: 
F =  U ~ v ( r t  A. In particular, since in this section Ao belongs to F, there is 
a unique scale called ko such that A o E Mko(F). The particular square of 
Mko(F) containing Ao is called Ao k~ 

Each square of Do in a maximal square of Mk(F) is at a distance at 
most 2,, /2 2 k from the border of F, and there are 4 k such squares. There- 
fore there exist constants C3, C4, and C5 such that 

C2ael2 ) [a + C 1 In L(i, ~F)] 
e x p -  ~ a + l n L ( A , ~ F )  

F connected A c F 
A o E F  

/" connected 
A 0 a [ "  

(2 ) exp - C3ad 2 IMk(F)I [a q- C 4 k o ]  
~k a + k + l n i  

(? <. ~ f (a ,  ~, I, ko) ~ exp - -  Csaal 2 IMk(F)I 
k0 F connected 

do c Mko( F ) 

with 

f (a ,  ~, l, ko) - [a + C 4 ( k  o + In/) ]  exp - Cs&12 In lJ 

(2.52) 

and ~ = inf(a, 1). At given values of a and a, S~0 f (a ,  s, l, ko) can be made 
as small as we want by choosing l large enough. [In (2.52) we bounded 
a4k/(a+ln l + k )  by const-3 ~ (6/ln l), which of course is not optimal.] 

When M(F)  is reduced to Mo(F) [i.e., M~(F) is empty for k > 0 ]  
summing over F is a kind of "Koenigsberg bridge" problem completely 
standard in this context. One uses the decay factors e -~<rl with K large 
coming in this case from (2.52) (plus the fact that A 0 E F to break transla- 
tion invariance). This is usually done by associating to each connected set 
a different spanning tree and then a different random walk of length twice 
the area of the set obtained by "turning around the tree." The number of 
such random walks on a finite-dimensional lattice being exponential in 
their length, one ends up with a geometrically convergent series. 

The only difference here is that the set F lives on various scales. 
Nevertheless, we follow the same strategy as in the standard case. Squares 
A and A' belonging to M(F)  (even within different lattices D~ and Dk,) are 
still said to be connected if they share a portion of an edge (a common 

(2.53) 



Pinning of an Interface by a Weak Potential 89 

corner is not enough). Recall that we consider F as the union of the 
L squares in M(F)  - U ~ = o Mk(F). We draw the graph of the elementary rela- 

tions of connectedness between the elements of M(F).  The fact that F itself 
is connected means that this graph is connected. Therefore, by eventually 
omitting some of the relations, for each such graph we can choose a 
particular spanning tree (in an arbitrary way). This tree is made of a 
labelled tree T with n - IM(F)I vertices labelled as 0, 1,..., n - 1, and n - 1 
lines (in the usual mathematical sense of Cayley's theorem) together with 
an assignment co of a square co(i) of a certain scale ki to each vertex i, 
0 ~< i ~  n - 1 ,  of the tree. The set of all squares co(i) is then nothing but 
M(F).  

We can always choose co such that the vertex with label 0 (the root of 
the tree) is Ako ~ in Mko(F) [in other words, co(0)= A0k~ 

In this way, knowing k0, the sum over the sets F can be bounded by 
the sum over the trees T and the assignments co such that the root of the 
tree is at Ao ~~ and such that squares assigned by co to vertices which are 
linked on the tree are connected. Remark, however, that in this way we 
associate truly ( n - 1 ) !  pairs (T, co) (with the features specified above) to 
each set F because of the permutational symmetry for the labelling of the 
vertices of T. It is important to take this overcounting factor into account. 

Another important observation is that for a fixed A ~M~ there are 
4 �9 2 k- k' squares A' in Mk, with k' ~< k connected to it and 0, 1, or 2 squares 
A' in Mk, connected to it for any k ' > k .  Hence, the maximal number of 
squares of a given scale k' connected to A is always bounded by 4 . 2  k. 

Therefore (k0 being fixed) we can bound the sum over F in (2.52) in 
the following way: 

exp - C, ~ IMK(F)[ 3 ~ 
F c o n n e c t e d  
A 0 c M k o ( F  ) 

~< 2 Cs i - ~  3k' (2.54) 
T, eo i 

where we recall that ki is the scale of the square co(i). 
By Cayley's theorem the number of trees T with coordination number 

di at site i is 

d , = ~ i ~  ), (2.55) 

(di, the coordination number or number of links in the tree ending at 
vertex i, is always bigger than or equal to 1). Therefore we have [since 
( n - Z ) ! / ( n -  1)! ~< 1] 
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Z ( n _ l ) ! e x p  - Z CsT~-~3ki 
T,~o i = 0  

~< Y, 2 2  1 sup 2 e x p -  C5~-~3 k' 
n>~ 1 {ki} {d,} Hi (di- 1)[ Twith co with i 

n, {di} f ixed {hi} axed  

(2.56) 

To perform the sum over co with the set of integers k~ fixed, we have 
simply to start from the known root co(0) and to proceed toward the "end 
of the branches" of the trees, For fixed values of the {ki}, fixed T, and fixed 
coordination numbers di, the sum over co is bounded by I~7-o 1 [4-2ki] Ji 1, 
using the remark above on the number of squares of a given scale 
connected to a given one. 

Therefore 

E 
n ~ > l  

Z ~ 1 sup Z exp - i  C 5 ~ 3  k' 
{ki} {di} I~ i  ( d i - -  1 ) !  T w i t h  co wi th  

n, { 4 }  fixed {ki} f ixed 

~< 2 2 exp - 
,~>1 {ki} i=o 2 In /  

~l~1F[A'ak'] a ' - '  ( Cs&12 )1 
x ~ k (;/,~-1~ exp 3 k' 

{di} i : 0  2 ln l 

~< ~, ~ e x p -  3 k' exp 4.2 k'-CS&l 2 
,~>l{k,} i 2 ln /  ~=o 2 ln/3k~ 

(2.57) 

Choosing I large enough, so that 

C 5 ~/el 2 
2 In l ~> C6 ~> sup(4, C4) (2.58) 

a condition that we assume now, we obtain 

E 
n ~ > l  

exp _ "  1 3 xi exp 4 .2  k~ 
{~i} i=o 2 l n /  i=o 

~< ~', 2 exp - y '  4C63 k' 
n~>l {~,} /=o 

( e-4C___~6 ~n e-4C6 
<~\l--e-4C6j 1 - 2 e  4c6<<'2e 4c6 

n 

C5&122 l n l 3 k i ) ]  

(2.59) 
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Taking into account (2.52) and (2.53), our final bound, assuming that 
(2.58) is fulfilled, is simply 

2 [exp( -4C6) ]  ~ f(a, e, l, ko) 
ko ( {tel 2 3ko~ 

= 2 r e x p ( - 4 C 6 ) ]  ~, [ a +  C4ko] exp - C s  T ~  ) 
k0 

~< 2(a + 1 ) exp(-4C6)  

[using (2.58)]. This completes the proof of Lemma 2.3. 

(2.60) 

A P P E N D I X  A 

In this appendix we recall the second GKS inequality, which we used 
throughout this paper. A measure d/~ is said to be an even ferromagnetic 
measure on R n if there exist n even measures on R, dv~ ..... dv,, and a matrix 
A = (ao . ) l<~i , j<~n  satisfying au~<0 for i # j ,  such that 

dl2(xl ..... xn)=exp ( -  ~,aijx,xj) I] . 
t ,J  

(AI) 

A function on R can be uniquely written as the sum of an even and odd 
function. As a result we have 

~ ( ~ ,  I R ) = ~  + |  (A2) 

where ~ +  (resp. o~ ) is the vector space of odd (resp. even) functions. 
Let ~g+ (resp. (g-)  be the subset of ~ +  (resp. ~ ' - )  consisting of 

increasing and positive functions on ~+. Let (~ be the set Z*cg- .  The set 
(g is invariant under positive linear combinations and under multiplication. 

Let a be the function assigning to each x its sign [i.e., a(x)= x/lx] if 
x # o, a(0)  = 0].  

It is easily shown that (g is the smallest set containing a, (g+, and 
products and sums of these sets. We can now construct a set (r of functions 
on R" (which has a positive cone structure) defined as follows: each 
element g of ff can be written 

g = ~, gi (A3) 
i 

where gi has the following expression: 

g (h, ..... =Fl j(hj) 
) 

and f~j ~ cg (A4) 
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We can now state the second GKS inequality (a proof can be found 
in ref. 5). Let d# be an even, positive ferromagnetic measure, and F and G 
be two elements of fq; then 

(FG)a~,> ( F ) +  (G)d~ 

In particular, if G is positive, we obtain immediately 

(A5) 

(F)Ga~, >>- (F)dv (A6) 

which is the inequality we used throughout this work. 

APPENDIX  B 

In this appendix, we will derive an upper bound for the mean height 
of a fluctuating interface above a wall. We will precisely show inequality 
(2.15b), which we recall: 

( h i )  d,.o,hj=O, hk>~O,V k ~ C 1 in d(~, j)  (B1) 

Let Zw be the characteristic function of the presence of the wall, i.e., 
Zw( { hk } ) = z(hk ~ O, Vk ~ A). We have 

( hi)~w )hj-o 
(hi)dpo,hj=O, hk>O,V k -- (Zw)hi=O (B2) 

From the GKS inequality, 

( h i )  d#o,hj=O, hk>~O, Vks A ~ ( h i )  dU6,hj_O, hk>~O, Vks A (B3) 

where d#~ is the Gaussian measure with the following boundary condition: 

(k,k') keA lenA 

for any strictly positive function f on the boundary of A, the finite box in 
which the theory is defined. Of course, we are interested in bounds which 
are uniform as A ~ ~ .  The function f is chosen below for this purpose. 

Furthermore, we can also introduce a strictly positive boundary condi- 
tion f ( j )  at site j which by GKS increases the value of (hi). More 
precisely, 

(hi)cl~O,hj=O, hg>~O, Vk ~ (hi)du~),hj--f(j),hk>O, Vk 

= (hiZw)d#6,hj_f(j) /(Zw)du6,hj=f(j)  

( h~) a~,6,~j= f(j)/ ( Zw ) du+&_ f(j) (B5) 
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We can write 

1 - <Zw >+6.h/=s(i) = <;~(3k e A, hk ~< 0) >+6.h,=f~/) 

k~A 
(B6) 

We shall now prove that for C large enough and for some suitable 
choice of f,  when A goes to + ~ we have the inequalities 

_< ! < hi > a~6,~j= f(j) "-~ C In d( i, j)  (B7) 

1 

k ~ A  

from which we easily deduce the upper bound (B1) with C1 =2C' .  As a 
result the problem is reduced to the study of the one-point function: 

<z(hk = x) >+6,hi=f (J) (B9) 

The random variable hk being Gaussian, it is enough to know its mean 
value and its covariance to know entirely its distribution. The mean value 
g(k) is the solution of a variational problem. The variational equations are 

Adg(k)=O V k e A ,  k #  (0, 0) (B10) 

g ( j ) = f ( j ) ;  g( l )=f(1)  VleOA ( n l l )  

with Aa the discrete Laplacian on  Z 2, and f to be chosen below. 
We begin by studying a similar problem in the continuum, where we 

choose a boundary condition which is Cln  d(i, j) on the boundary of a 
disk of radius 1 centered around the. site j .  The variational problem is 

AcU(Z)=O V Z ~  2, l < l z - - j ]  (B12) 

u ( z ) = C l n d ( i , j )  if [ z - j ]  = 1 (B13) 

with A< the continuous Laplacian. An obvious solution in polar coor- 
dinates (r = ] z - j [ )  is, for any given positive constant C', 

u( r ) = C In d( i, j) + C' In r (B14) 

We consider the discretized function Ud which is equal to u on 
Z 2 -  {(0, 0)}, and which is equal to Cln  d(i, j)  at j. Finally, we define the 
function v- -Adu d. This is a function on the lattice, and by explicit 
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computation from the explicit form (B14) there exists a constant K(C') 
(depending only on C') such that [with r(k)= [kj]] 

[v(k)[<~K(C')/[r(k)+l] 3 if [k]EA, k r  (B15) 

because for k r  A cu = 0, and ddUd = (A d -  A,)(u), which is evaluated by 
a third-order derivative [the constant piece C ln  d(i, j) disappears in the 
Laplacian ]. 

By (B15), the integral Iv of v over the whole lattice Z 2 is convergent 
and bounded by K'(C'). We consider on the lattice the function 
w - v - I v & ( k ) ,  i.e., the function w coincides with v except at the origin and 
its Fourier transform ~V vanishes at p = 0. From (B15) and the definition of 
w we have that, for some constant K"(C'), 

IPl- , /2  j~(p)[ <<.K"(C')  (B16) 

Since I P]~/z( 4 -  2 cos Pl - 2 cos P2)-1 (which is the Fourier transform of 
the inverse of the discrete Laplacian) in integrable over [ - -~ ,  ~ ]2  we 
obtain a uniform bound, which depends only on C' for the function e on 
Z 2 whose Fourier transform is 

l 
e(P) = 4 - 2 cos Pl - 2 cos P2 vb(p) 

Therefore, if we consider the function g -- u -  e, we have proved 

[ g ( k )  - C In d(i, j )  - C' In [k - j[ [ ~< L(C')  (B 17) 

for some positive function L(C') depending only on C'. 
Finally we take for the boundary condition of our discrete variational 

problem f ( l ) =  g(l) for leOA, and f ( j ) =  g(j). We solve the variational 
problem (B10)- (Bl l )  with this boundary condition f (the solution exists 
and is unique because it corresponds to the diagonalization of a finite- 
dimensional quadratic form). But the solution of this variational problem 
is precisely g because the boundary condition is satisfied and 3,~g=O in 
A - {(0, 0)}. 

The covariance of h(k), when we effectuate the translation around the 
mean value g(k), is the same as the covariance for the problem with 0 
boundary conditions at site j and on the boundary of A. This covariance 
grows as A ~ ~ ,  and its value in the thermodynamic limit is bounded in 
the standard way by c. In d(j, k) for some constant r 

With this information, (B7)-(B8) follow easily. Indeed, (B7) is a 
simple consequence of (B17), and (B8) follows from 

(6(hk -- X))d~,hj=f~jl <~ exp{ -- [x -- g(k)]2/[c In d(j, k)]  } (B18) 
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Using (B18), we can write 

(z(hk <<- O) )d~,6,hj=f~j) 
k ~ A  

fo _ [x_g(k)]2 
~< ~ dx exp 

k~m - ~  C In d(j, k) 
c In d(j, k) -g (k )  2 

~< Y', exp 
k~A 2g(k) c In d(j, k) 

~< ~ c In d(j, k)exp  - [C  In d(i, j) + C' In Fk - j j  - L ( C ' ) ]  2 ~< 1/2 

k~A 2g(k) c In d(j, k) 
(B19) 

if we take first C' big enough, then C still much larger (depending on C'). 

APPENDIX C 

In this appendix we explain how one can sum over the regions F, i.e., 
we give a second proof  of Lemma 2.3, without  using multiscale lattices. The 
region F is decomposed as F '  - U 7= 1 Hi,  where F '  and each Hi are simply 
connected, hence it is entirely defined by its boundary  (Fig. 4). The sum 
over all possible F ' s  decomposes into a sum over F '  and over all Hi. Let  
us describe the necessary steps to perform the summations  in this way. 

The small factors per cube in (2.29) allow one to sum over the shape 
of the simply connected regions F ' ,  Hi if we know one point  of their 
boundary.  Indeed the boundary  of F '  or Hi  determines these regions, and 

mmmmmmmmmmmm 
mmmm mmmmmm 
mmm mmmmm 
mm mmmm 
mmm mmm mmmm 
mmm m~ mmmmm 

I I I l ' k  --- 
I I I I I I I I'q I I [ 1-_-_-_ 
t I I [ I I [ I 1",1 ] I ] 
! i i': ! iIi i i ~ !  i i-A 

t--I 1 

Fig. 4 

8 2 2 / 6 6 / i - 2 - 7  
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on this boundary the bad factor In(A, OF) remains constant. Therefore we 
have an ordinary situation in which we have exponential decay in the sfze 
of the boundaries OF' or 0Hi, which allows us to sum over these 
boundaries if we know one particular cube of each of them. 

The second fact is that we can sum the position of each hole one with 
respect to the other. This is done by building a tree connecting all these 
holes with some special properties. The rule to build this tree is the 
following. We draw the shortest among all the paths connecting two holes 
(if there are several such shortest paths, we choose one of them arbitrarily). 
This path connects two holes which are considered a single one from now 
on. Then we iterate this process, until the full tree is built (this recalls a 
cluster expansion fi la Brydges-Battle Federbuch; see, e.g., ref. 4). The tree 
built in this way has the following nice properties: 

1. The lines in the tree do not cross. 

2. Each square does not touch more than six lines in the tree. 

Lines in the tree do not cross; otherwise., using the triangular 
inequality, one would find a contradiction with the fact that at each stage 
of the tree-building process the line added is the shortest between 
connected clusters already built. 

The second property is true because six is the maximum number of 
tree lines ending in a given square because the hexagonal packing is the 
closest packing of spheres in two dimensions. For  the same reason other 
squares are also not crossed by more than six lines. 

These properties mean that giving one-sixth of the small factor of each 
square to each line which may cross it, we obtain an exponential decay in 
the length of each line. The endpoints of the lines are the particular squares 
on the boundaries of the holes which had to be fixed to sum over the 
boundaries. Organizing the summation in this way, we can prove 
Lemma2.3. To perform the last summation (over F'), we have also to 
attach the boundary of F '  to the particular square Ao whose position is 
known and which is inside F. This is done by drawing one more line, the 
shortest one connecting A o to OF. 

A P P E N D I X  D 

In this appendix we will generalize the method used in this paper to 
deal with a potential V negative, even, and increasing on N +. Let us define 
the function Va(h) by (1.12a)-(1.12b). V a is negative, even, and increasing 
on R +. From the GKS inequality we have 

( Ih~[ )v~  < (Ih,[)w, (D1) 
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We again use the same arguments. Section 2.2 applies exactly without 
changing anything. In Section 2.3 the bound (2.33) is left unchanged with 
V replaced by V a. The lower bound (2.35) is replaced by 

f a ( V~ro)Ooro, V]_r ~ V"(h) dh (D2) ~< 8a + 8C1 In L(i, ~?Fo) , 

In order to show this upper bound, one has to show that F is decreasing. 
The method we used can be straightforwardly modified and Eq. (2.43) can 
be written in this case as 

d 
dx - - -  G(x)= ~, 1 3 ( h , - x ) [ 6 ( h j - a ) - 6 ( h j + a ) ]  

d ~ a F o , j ~ A  

x 17[ z(hj, q~ I - a ,  a])  ~[ ~ , e  G-to) 
j '  c d  A'~aFo 
j ' ~ j  A ' @ A  

Z 
j ~  A F 0 

x H @~e ~A=.r) (D3) 
d c F o  

Once again every element of this sum is positive. It remains to show the 
last part of the lemma. We have 

f 
+ a  

( Va(h'))q'~ro," w'A,ro = a Va(x) F(x) dx (D4) 

From the GKS inequality applied to functions of one variable we have 

' ;  E ;~ J 2--a (-Va)(x)F(x)dx>~ ~a ( -Va) (x )dx  g(x)dx (D5) 
a - - a  - - a  

As a result, 

(D6) 

Equation (2.50) still applies and we get the announced upper bound. 
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